Knowledge-based Classification of Quickbird Image of Ulaanbaatar City, Mongolia
Хэвлэлийн нэр: American Journal of Signal Processing, 3(3)
Зохиогч:  Ц.Бат-Эрдэнэ
Хамтран зохиогч: D. Amarsaikhan1, M. Ganzorig1, B. Nergui1
Хэвлүүлсэн огноо: 2013-07-18
Хуудас дугаар: pp.71-77
Өгүүллийн хураангуй: The aim of this research is to produce an urban land cover map ready to be used for planning and management. To extract the reliable information from the selected remote sensing (RS) data, a knowledge-based method based on a rule-based approach is constructed. The result of the knowledge-based technique is compared with the result of a standard maximum likelihood classification (MLC) method and it indicates a higher accuracy. Overall, the study indicates that the knowledge-based method is a powerful tool in the production of a reliable land cover map and the output of the method can be used for any spatial decision-making process.
Өгүүллийн төрөл: IEEE индекстэй сэтгүүл
Өгүүллийн зэрэглэл: Гадаад
Түлхүүр үг: #Land cover #Classification #RS image #Knowledge-basedХавсаргасан файл:
Knowledge-based Classification of Quickbird Image of Ulaanbaatar City, Mongolia_American_JOURNAL_SP.pdf;