Maximum and minimum distances of set of points. Basic concept.
Хэвлэлийн нэр: Хөх Хотын Багшийн Дээд Сургуулийн эрдэм шинжилгээний бичиг
Зохиогч:  Н. Дайвий-Од
Хамтран зохиогч:
Хэвлүүлсэн огноо: 2014-04-03
Хуудас дугаар: 3
Өгүүллийн хураангуй: If the point set is a finite, then there
exists at least one diameter for that set. However, diameter is not necessary
be existed in a set if it consists of infinite points. Example: Let’s consider a set which
consists of all rational points of a unit line, lying in x-axis if a coordinate
system. This is an infinite point set having a diameter, i.e a distance of two
end points. Now let’s consider another set which consists of all points having
integer coordinates. This is a point set without having a diameter since it has
no boundary. It is almost obvious that there exist at
least one dimeter exists in a finite set. But this statement may not be true
for infinite set. The rational number set of a unit line, mentioned in the
previous example, has no dimeter due to denseness of rational numbers. For the
set with points having integer coordinates, the dimeter is one, i.e distance of
two adjacent points.
Өгүүллийн төрөл: Олон улсын хурлын эмхэтгэлд бүрэн хэмжээний өгүүлэл
Өгүүллийн зэрэглэл: Гадаад
Түлхүүр үг: